SAP97 interacts with Kv1.5 in heterologous expression systems.

نویسندگان

  • M Murata
  • P D Buckett
  • J Zhou
  • M Brunner
  • E Folco
  • G Koren
چکیده

PDZ domain-containing proteins such as SAP97 and ZO-1 have been implicated in the targeting and clustering of ion channels. We have explored the interactions of these polypeptides with a cardiac voltage-gated potassium channel. Immunocytochemistry in cardiac myocytes revealed colocalization of SAP97 and Kv1.5, both at the intercalated disks and the lateral membranes. Transient transfection experiments in COS-7 cells revealed that SAP97 and Kv1.5 polypeptides formed perinuclear clustered complexes that could be coimmunoprecipitated. Mutation of the three COOH-terminal amino acid residues of Kv1.5 (T-D-L to A-A-A) abolished these interactions. Whereas in most COS-7 cells the SAP97-Kv1.5 complexes were retained in the ER, functional analyses in Xenopus oocytes showed that Kv1.5-encoded outward potassium currents were augmented by coexpression with SAP97. By contrast, cotransfected ZO-1 and Kv1.5 polypeptides in COS-7 cells could not be coprecipitated nor did the coinjection of ZO-1 augment the Kv1.5-encoded currents in oocytes. Collectively, our results suggest that SAP97 may play an important role in the modulation of Kv1.5 channel function in cardiac myocytes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Caveolin-3 and SAP97 form a scaffolding protein complex that regulates the voltage-gated potassium channel Kv1.5.

The targeting of ion channels to particular membrane microdomains and their organization in macromolecular complexes allow excitable cells to respond efficiently to extracellular signals. In this study, we describe the formation of a complex that contains two scaffolding proteins: caveolin-3 (Cav-3) and a membrane-associated guanylate kinase (MAGUK), SAP97. Complex formation involves the associ...

متن کامل

The anchoring protein SAP97 retains Kv1.5 channels in the plasma membrane of cardiac myocytes.

Membrane- associated guanylate kinase proteins (MAGUKs) are important determinants of localization and organization of ion channels into specific plasma membrane domains. However, their exact role in channel function and cardiac excitability is not known. We examined the effect of synapse-associated protein 97 (SAP97), a MAGUK abundantly expressed in the heart, on the function and localization ...

متن کامل

SAP97 and Cortactin Remodeling in Arrhythmogenic Purkinje Cells

Because structural remodeling of several proteins, including ion channels, may underlie the abnormal action potentials of Purkinje cells (PCs) that survive in the 48 hr infarcted zone of the canine heart (IZPCs), we sought to determine the subcellular structure and function of the KV1.5 (KCNA5) protein in single IZPCs. Clustering of the Kv1.5 subunit in axons is regulated by a synapse-associate...

متن کامل

Transcriptional activation of the anchoring protein SAP97 by heat shock factor (HSF)-1 stabilizes Kv1.5 channels in HL-1 cells

BACKGROUND AND PURPOSE The expression of voltage-dependent K(+) channels (K(v) ) 1.5 is regulated by members of the heat shock protein (Hsp) family. We examined whether the heat shock transcription factor 1 (HSF-1) and its inducer geranylgeranylacetone (GGA) could affect the expression of K(v) 1.5 channels and its anchoring protein, synapse associated protein 97 (SAP97). EXPERIMENTAL APPROACH...

متن کامل

Glucocorticoid induction of Kv1.5 K+ channel gene expression in ventricle of rat heart.

Multiple voltage-gated K+ channels contribute to the repolarization phases of the cardiac action potential and are targets of several antiarrhythmic drugs. The Kv1.5 K+ channel gene is expressed in the heart, and heterologous expression of this gene generates a slowly inactivating K+ current. Previously, we found that glucocorticoids specifically upregulate pituitary Kv1.5 gene expression. To t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 281 6  شماره 

صفحات  -

تاریخ انتشار 2001